3.2033 \(\int \frac{(3+5 x)^3}{\sqrt{1-2 x} (2+3 x)^5} \, dx\)

Optimal. Leaf size=100 \[ \frac{\sqrt{1-2 x} (5 x+3)^2}{84 (3 x+2)^4}+\frac{\sqrt{1-2 x} (4955 x+3168)}{10584 (3 x+2)^3}-\frac{42995 \sqrt{1-2 x}}{74088 (3 x+2)}-\frac{42995 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{37044 \sqrt{21}} \]

[Out]

(-42995*Sqrt[1 - 2*x])/(74088*(2 + 3*x)) + (Sqrt[1 - 2*x]*(3 + 5*x)^2)/(84*(2 + 3*x)^4) + (Sqrt[1 - 2*x]*(3168
 + 4955*x))/(10584*(2 + 3*x)^3) - (42995*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(37044*Sqrt[21])

________________________________________________________________________________________

Rubi [A]  time = 0.0261442, antiderivative size = 100, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {98, 145, 51, 63, 206} \[ \frac{\sqrt{1-2 x} (5 x+3)^2}{84 (3 x+2)^4}+\frac{\sqrt{1-2 x} (4955 x+3168)}{10584 (3 x+2)^3}-\frac{42995 \sqrt{1-2 x}}{74088 (3 x+2)}-\frac{42995 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{37044 \sqrt{21}} \]

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^3/(Sqrt[1 - 2*x]*(2 + 3*x)^5),x]

[Out]

(-42995*Sqrt[1 - 2*x])/(74088*(2 + 3*x)) + (Sqrt[1 - 2*x]*(3 + 5*x)^2)/(84*(2 + 3*x)^4) + (Sqrt[1 - 2*x]*(3168
 + 4955*x))/(10584*(2 + 3*x)^3) - (42995*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(37044*Sqrt[21])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 145

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol] :
> Simp[((b^3*c*e*g*(m + 2) - a^3*d*f*h*(n + 2) - a^2*b*(c*f*h*m - d*(f*g + e*h)*(m + n + 3)) - a*b^2*(c*(f*g +
 e*h) + d*e*g*(2*m + n + 4)) + b*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)) + b^2*(c*(
f*g + e*h)*(m + 1) - d*e*g*(m + n + 2)))*x)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1))/(b^2*(b*c - a*d)^2*(m + 1)*(m
 + 2)), x] + Dist[(f*h)/b^2 - (d*(m + n + 3)*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)
) + b^2*(c*(f*g + e*h)*(m + 1) - d*e*g*(m + n + 2))))/(b^2*(b*c - a*d)^2*(m + 1)*(m + 2)), Int[(a + b*x)^(m +
2)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && (LtQ[m, -2] || (EqQ[m + n + 3, 0] &&  !L
tQ[n, -2]))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(3+5 x)^3}{\sqrt{1-2 x} (2+3 x)^5} \, dx &=\frac{\sqrt{1-2 x} (3+5 x)^2}{84 (2+3 x)^4}-\frac{1}{84} \int \frac{(-389-685 x) (3+5 x)}{\sqrt{1-2 x} (2+3 x)^4} \, dx\\ &=\frac{\sqrt{1-2 x} (3+5 x)^2}{84 (2+3 x)^4}+\frac{\sqrt{1-2 x} (3168+4955 x)}{10584 (2+3 x)^3}+\frac{42995 \int \frac{1}{\sqrt{1-2 x} (2+3 x)^2} \, dx}{10584}\\ &=-\frac{42995 \sqrt{1-2 x}}{74088 (2+3 x)}+\frac{\sqrt{1-2 x} (3+5 x)^2}{84 (2+3 x)^4}+\frac{\sqrt{1-2 x} (3168+4955 x)}{10584 (2+3 x)^3}+\frac{42995 \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx}{74088}\\ &=-\frac{42995 \sqrt{1-2 x}}{74088 (2+3 x)}+\frac{\sqrt{1-2 x} (3+5 x)^2}{84 (2+3 x)^4}+\frac{\sqrt{1-2 x} (3168+4955 x)}{10584 (2+3 x)^3}-\frac{42995 \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )}{74088}\\ &=-\frac{42995 \sqrt{1-2 x}}{74088 (2+3 x)}+\frac{\sqrt{1-2 x} (3+5 x)^2}{84 (2+3 x)^4}+\frac{\sqrt{1-2 x} (3168+4955 x)}{10584 (2+3 x)^3}-\frac{42995 \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )}{37044 \sqrt{21}}\\ \end{align*}

Mathematica [C]  time = 0.0224584, size = 52, normalized size = 0.52 \[ \frac{\sqrt{1-2 x} \left (\frac{1029 \left (31500 x^2+41823 x+13885\right )}{(3 x+2)^4}-1031880 \, _2F_1\left (\frac{1}{2},3;\frac{3}{2};\frac{3}{7}-\frac{6 x}{7}\right )\right )}{2333772} \]

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^3/(Sqrt[1 - 2*x]*(2 + 3*x)^5),x]

[Out]

(Sqrt[1 - 2*x]*((1029*(13885 + 41823*x + 31500*x^2))/(2 + 3*x)^4 - 1031880*Hypergeometric2F1[1/2, 3, 3/2, 3/7
- (6*x)/7]))/2333772

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 66, normalized size = 0.7 \begin{align*} -324\,{\frac{1}{ \left ( -6\,x-4 \right ) ^{4}} \left ( -{\frac{42995\, \left ( 1-2\,x \right ) ^{7/2}}{444528}}+{\frac{374945\, \left ( 1-2\,x \right ) ^{5/2}}{571536}}-{\frac{363407\, \left ( 1-2\,x \right ) ^{3/2}}{244944}}+{\frac{274027\,\sqrt{1-2\,x}}{244944}} \right ) }-{\frac{42995\,\sqrt{21}}{777924}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^3/(2+3*x)^5/(1-2*x)^(1/2),x)

[Out]

-324*(-42995/444528*(1-2*x)^(7/2)+374945/571536*(1-2*x)^(5/2)-363407/244944*(1-2*x)^(3/2)+274027/244944*(1-2*x
)^(1/2))/(-6*x-4)^4-42995/777924*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.70982, size = 149, normalized size = 1.49 \begin{align*} \frac{42995}{1555848} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) + \frac{1160865 \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} - 7873845 \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + 17806943 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 13427323 \, \sqrt{-2 \, x + 1}}{37044 \,{\left (81 \,{\left (2 \, x - 1\right )}^{4} + 756 \,{\left (2 \, x - 1\right )}^{3} + 2646 \,{\left (2 \, x - 1\right )}^{2} + 8232 \, x - 1715\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^3/(2+3*x)^5/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

42995/1555848*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/37044*(1160865*(-
2*x + 1)^(7/2) - 7873845*(-2*x + 1)^(5/2) + 17806943*(-2*x + 1)^(3/2) - 13427323*sqrt(-2*x + 1))/(81*(2*x - 1)
^4 + 756*(2*x - 1)^3 + 2646*(2*x - 1)^2 + 8232*x - 1715)

________________________________________________________________________________________

Fricas [A]  time = 1.6366, size = 311, normalized size = 3.11 \begin{align*} \frac{42995 \, \sqrt{21}{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )} \log \left (\frac{3 \, x + \sqrt{21} \sqrt{-2 \, x + 1} - 5}{3 \, x + 2}\right ) - 21 \,{\left (1160865 \, x^{3} + 2195625 \, x^{2} + 1385462 \, x + 291670\right )} \sqrt{-2 \, x + 1}}{1555848 \,{\left (81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^3/(2+3*x)^5/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/1555848*(42995*sqrt(21)*(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 16)*log((3*x + sqrt(21)*sqrt(-2*x + 1) - 5)/(3*
x + 2)) - 21*(1160865*x^3 + 2195625*x^2 + 1385462*x + 291670)*sqrt(-2*x + 1))/(81*x^4 + 216*x^3 + 216*x^2 + 96
*x + 16)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**3/(2+3*x)**5/(1-2*x)**(1/2),x)

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Giac [A]  time = 2.20456, size = 135, normalized size = 1.35 \begin{align*} \frac{42995}{1555848} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{1160865 \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} + 7873845 \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - 17806943 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + 13427323 \, \sqrt{-2 \, x + 1}}{592704 \,{\left (3 \, x + 2\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^3/(2+3*x)^5/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

42995/1555848*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 1/592704*(
1160865*(2*x - 1)^3*sqrt(-2*x + 1) + 7873845*(2*x - 1)^2*sqrt(-2*x + 1) - 17806943*(-2*x + 1)^(3/2) + 13427323
*sqrt(-2*x + 1))/(3*x + 2)^4